
s4lve: Shareable videogame analysis and visualization
Eric Kaltman

ekaltman@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania

Joseph C. Osborn
joseph.osborn@pomona.edu

Pomona College
Claremont, California

John Aycock
aycock@ucalgary.ca
University of Calgary

Calgary, Alberta, Canada

ABSTRACT

We describe a new browser-based tool for analyzing the behavior of
computational systems, with worked examples for the Atari 2600.
Our tool, s4lve (System State Sequence Search Language and Visu-
alization Environment), consists of three main parts. First, we define
a domain-specific visualization language tailored for understanding
low-level memory operations. Second, we leverage a discrete time-
series pattern matching language inspired by regular expressions to
capture states and memory locations of interest. Third, we integrate
these little languages with an intuitive, spreadsheet-based visual
interface juxtaposed with a live emulator. This combined system
supports both the incremental exploration of complex emergent
systems and rapid iteration on new visualizations.

CCS CONCEPTS

• Social andprofessional topics→History of software; •Human-

centered computing → Visualization systems and tools; • Ap-
plied computing → Computer games.

KEYWORDS

game studies, visualization, memory, emulation, domain-specific
language

ACM Reference Format:

Eric Kaltman, Joseph C. Osborn, and John Aycock. 2019. s4lve: Share-
able videogame analysis and visualization. In The Fourteenth International
Conference on the Foundations of Digital Games (FDG ’19), August 26–30,
2019, San Luis Obispo, CA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3337722.3341826

1 INTRODUCTION

Interactive software—including videogames—are highly emergent
systems defined in terms of complex interactions between remote
bits of program code. These programs exhibit their behavior through
human-visible traces (like the pixels eventually drawn to the screen),
transient digital storage (e.g., RAM or CPU registers), and implicit
information at the level of game design knowledge (for example,
maps of game worlds too large to fit in uncompressed form in mem-
ory). Even the data structures which fully exist within the machine
are extremely transient—they might change in between drawing
one row of screen pixels and the next!

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7217-6/19/08.
https://doi.org/10.1145/3337722.3341826

Figure 1: A s
4
lve visualization of Pitfall!’s procedural level

generation. (All interface figures are modified to show

salient features.)

Whether we want to study the design elements of a videogame or
the artistry behind its internal programming (or its copy protection
scheme, or quirks of the underlying hardware), we generally have
two available approaches as researchers: a deep dive and “reading”
into the game’s assembly code and compressed internal data, or
the construction of automated tools which record and interrogate
the game’s runtime behavior (perhaps through instrumented game
console emulators). We then take insights and data gleaned from
these techniques and narrativize or visualize them in service of a
particular argument.

These approaches have produced powerful and informative vi-
sualizations ranging from floppy disk and audio driver activity to

https://doi.org/10.1145/3337722.3341826
https://doi.org/10.1145/3337722.3341826
https://doi.org/10.1145/3337722.3341826

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Kaltman, Osborn, and Aycock

illustrations of anti-piracy and maze generation code.1 The result-
ing visualizations have functioned as informative snippets of system
functionality, from floppy disk access and audio driver output to il-
lustrations of anti-piracy and maze generation code. Unfortunately,
combining deep code reading with ad hoc reverse engineering tools
does not scale well as a research practice. An individual researcher
cannot meaningfully examine the binary code of very many games
within their career, and writing programs to analyze programs is
hard (and in many cases potentially impossible thanks to the Halt-
ing Problem). Even worse, only those researchers who are both
savvy games scholars and effective reverse engineers can read and
manipulate game programs in this comprehensive way. Moreover,
these researchers must also be talented graphic designers if they
want to create effective visualizations to enable their work to reach
the widest possible audience of readers.

We have synthesized insights drawn from reading and creating
these types of hybrid procedural / visual arguments into a new in-
teractive environment and language for doing systems-level game
analysis. In Figure 1, we showcase our new web-based prototyping
environment s4lve (System State Sequence Search Language and
Visualization Environment), which we believe helps to integrate
and support the diverse skillset needed to analyze internal system
design and behavior. s4lve combines a novel domain-specific lan-
guage (DSL) for visualizing game system state changes with the
powerful sequence analysis language Playspecs [9] and integrates
them into a convenient web-based development and visualization
environment. Making these custom analyses as trivially shareable
as web pages immediately makes them available not only for aca-
demic argument, but also for public education, library, and museum
purposes; moreover, this makes them easy to integrate into peda-
gogy [1]. Shareability through a web interface also removes local
dependencies which improves the reproducibility of s4lve’s visual-
izations, allowing them to be embedded into arguments in a shared
context and modified by motivated readers. We believe this shared
analysis context will allow for greater participation from a more
diverse set of researchers and students, especially those who might
lack the domain knowledge operationalized by s4lve interface and
DSL.

2 PROCESSING GAME PLAY STREAMS

The current version of s4lve embeds the Atari 2600 emulator Ja-
vatari [10]. We selected it due to the importance of Atari 2600
games and to simplify embedding and instrumenting the emulator
in our web-based environment. Hooks have been inserted both
after each Atari Television Interface Adapter vertical blank and
after each central processing unit instruction. These hooks are used
to transfer control to s4lve’s interpreter. s4lve consists of three
integrated (but modular) components: Playspecs, which function
like regular expressions for sequences of states and are used to
describe and capture such sequences; the s4lve DSL, which com-
bines a specialization of Playspecs with a lex-like action language;
and the spreadsheet-based visualization environment, which also
supplies a vocabulary of actions to the DSL.

1Examples may be found at https://doi.org/10.11575/37x6-9690.

start ::= { globalstmt } [‘spreadsheet’ BYTE*] EOF
globalstmt ::= NEWLINE
globalstmt ::= STATE action
globalstmt ::= [STATE] PLAYSPEC action

action ::= stmt
action ::= ‘{’ { stmt } ‘}’
stmt ::= { WORD } NEWLINE

Figure 2: EBNF grammar for s
4
lve’s DSL.

2.1 Playspecs

Playspecs is a customizable generalization of regular expressions, a
text processing scheme founded on the theory of finite automata
and regular languages. The first generalization is to consider not just
characters of strings, but arbitrary tokens describing (for example)
game states. Specs written in the Playspecs syntax can therefore
describe any regular grammar of game situations: the period of
time a character stays at some position until they leave it, a player
first achieving one goal and then some time later achieving another,
a sequence of steps during which either of two Playspecs matches
(or both of them, or one after the other), and so on. We refer the
reader to earlier work on Playspecs for more examples [9].

The second generalization of Playspecs is to allow for arbitrary
user-defined predicates to accept or reject such a state. Where a
regular expression over strings might use a character class like
[abc] to accept a letter which is in the set containing a, b, or c, a
Playspec can use propositions of predicate logic.

In s4lve, Playspecs are supplemented with two memory-reading
predicates: at:region@location(pattern), which succeedswhen
the memory region named by region contains, at the memory off-
set specified by location, a sequence of bytes matching pattern;
and changed:region@location, which succeeds when the value
at the given memory address differs from its previous value. Mem-
ory regions can, for example, be ram for main memory or cpu for
CPU registers. Locations might be (for example) hexadecimal byte
addresses or named registers.

Since propositions can be combined (or negated) using conven-
tional logical operators, these two predicates together give an ex-
pressive declarative language for parsing low-level operations of
videogame hardware. Playspecs also allows for a modular extension
of this syntax to cover, for example, properties of dynamically allo-
cated objects in a game engine, scene graph hierarchies, or vertex
and index buffers sent to graphics cards.

2.2 s
4
lve’s Domain-Specific Language

A s4lve state analysis specification is expressed in an imperative
domain-specific language [8] which itself embeds the declarative
Playspecs language. This DSL allows common game state patterns
and their associated actions—and in particular, interaction with the
spreadsheet—to be easily written without recourse to more general-
purpose languages. The DSL also supports an “escape” mechanism
that allows arbitrary JavaScript code to be run if needed for more
advanced applications.

TheDSL grammar is shown in Figure 2. As a language associating
patterns with actions, it seemed natural to base its high-level design

https://doi.org/10.11575/37x6-9690

s
4
lve: Shareable videogame analysis and visualization FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

begin change to a different matching state
continue continue matching subsequent patterns
frame switch to frame-by-frame time steps
instr switch to instruction-by-instruction time steps
eval evaluate an arbitrary JavaScript expression
log log a message to the browser’s JavaScript console
message display a message in the UI’s text box
bubble display a pop-up message at a spreadsheet location
highlight highlight a range of the spreadsheet
label change a spreadsheet label or range of labels
normal un-highlight a range of the spreadsheet

Figure 3: s
4
lve’s general, browser, and spreadsheet actions.

on that of lex [5]. In its simplest form, a pattern-action pair fits on
one line:

at:cpu@PC(f000) log "start address"

This pattern, a single-state Playspec whichmatches when the CPU’s
PC (program counter) register has the value 0xf000, would log a
message to the console. Logging a message is only one of many
possible actions; the full set is given in Figure 3. Multiple actions
can also be specified for a single pattern.

Patterns can be qualified by states, and a qualified pattern will
only be considered if the DSL interpreter is currently in that state.
For example, here the above pattern-action pair is preceded by the
state name foo:

<foo> at:cpu@PC(f000) log "start address"

The begin action can be used to change the current state, e.g.,
begin foo, or begin "" to return to the original start state. Actions
can be executed immediately when a DSL specification is loaded
by using the special START state.

To handle the common case where a set of s4lve actions is tightly
coupled to a particular spreadsheet, the specification may optionally
end with the spreadsheet keyword. Everything after that point is
treated as a spreadsheet specification that is loaded accordingly.

2.3 Spreadsheet Interface

The current version of s4lve commits to a spreadsheet-style inter-
face for visualizing game state sequences. This is not an intrinsic
limitation, but a specific example from which future interfaces
could be generalized. s4lve’s visualization interface (shown in Fig-
ure 1) is split between a running Javatari instance and separate tabs
devoted to (1) s4lve code entry, (2) the spreadsheet specification
form (spreadsheet), (3) an active heatmap display of the Atari’s 128
bytes of RAM (0x80–0xFF), and (4) a JSON import-export for the
spreadsheet. Of these features, the most germane is the spreadsheet.

Commands executed by the DSL, such as highlighting, changing
a value, or providing a “bubble” message overlay based on memory
events, are reflected in the spreadsheet (see Figure 3). An analyst
can also define spreadsheet cells by reference to functions linked
to the underlying runtime state. For instance, inserting a runtime
location, like at:ram@0x89 or at:CPU@A, into a cell will bind the
location’s value to the cell’s displayed value and update accordingly.
Furthermore, other cell functions can then alter a cell’s CSS style

Figure 4: Asteroids’s bank switching visualized with s
4
lve.

based on a location’s value, heat(<location>,<color>), or based
on the cell’s computed value, eval(<cell_value>).

The import-export feature uses a simple JSON key / value for-
mat — cell_coordinate:expression — to allow other programs,
including the DSL, to alter cell values and functions. This avoids
potentially laborious manual entry in the spreadsheet itself if larger
chunks of memory need to be visualized.

3 DEMONSTRATION

In this section, we present three worked examples illustrating typ-
ical uses of s4lve: An interactive exploration of Asteroids ROM
bank-switching, an explication of how Pitfall! encodes the entire
game screen contents in a single byte of RAM, and an instructional
demonstration of how key RAM locations in Pitfall! are used dur-
ing play. We have made these examples available alongside s4lve’s
source code.2

3.1 Asteroids
While the maximum amount of address space for ROM in the
Atari 2600 was limited to 4 KiB, the amount of ROM in a game
cartridge could be larger. Additional hardware in the game car-
tridge would enable the ROM’s contents to be divided into memory
banks, that the programmer would toggle between explicitly us-
ing instructions to access special memory addresses that acted as
“soft switches.” How frequently would a game flip memory banks?
The bank switch demo (Figure 4) makes this visually apparent for
Asteroids (an 8 KiB cartridge) by highlighting the currently active
ROM bank in the spreadsheet ; this allows the game to be played

2https://github.com/ekaltman/javatari.js

https://github.com/ekaltman/javatari.js

FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA Kaltman, Osborn, and Aycock

Figure 5: Pitfall!’s RAM usage visualized with s
4
lve

(nonessential UI elements have been elided for clarity).

and the bank switching frequency to be easily observed simultane-
ously. The demo has uses for both conveying this information to
an audience, as well as analysis: it quickly gives an intuitive sense
as to how Asteroids is making use of memory.

3.2 The PCG of Pitfall!
In our second example, we explore how the game Pitfall! employs
some clever procedural content generation (PCG) to fit 255 screens
of jungle into a 4 KiB cartridge. The scheme hinges on the value—
and interpretation—of a single byte in RAM, which is changed
whenever the player flips from one screen of jungle to another [2].
The Pitfall! PCG demo (Figure 1) shows the way that the game
interprets this one byte, dynamically updating as the jungle screen
changes; the individual bits within the PCG byte are shown, and
dynamic spreadsheet highlighting indicates how those bits translate
into what is seen onscreen in the game.

3.3 Pitfall! in Motion

Our final example is meant to walk an interactor through Pitfall!’s
use of some key RAM locations. The incremental, stepwise nature
of this demo allows the player time to focus on each location as its
use is revealed, and even see how their in-game activity affects the
location. For example, when the X-coordinate of Pitfall Harry is
revealed (Figure 5), the player can move back and forth to watch
the memory location change. The selected locations are shown in
the context of the Atari 2600’s entire RAM contents continuously
changing as the game is played, illustrating how s4lve scales with
many updates on each time step.

4 FUTUREWORK AND CONCLUSIONS

Our immediate goal is to further extend the expressive power of
both the DSL and the spreadsheet operations as we gain further
experience developing concrete examples with s4lve. We may look
to visualization-oriented languages like Protovis [3], Diderot [4],
and Penrose [11], or the interface and study design of game-focused
mixed-initiative UIs like Kwiri [7] and Cicero [6] for inspiration
here.

s4lve is already a handy tool for understanding the behavior of
memory locations over time, and its sophisticated state sequence
analysis and flexible UI are significant improvements over the mem-
ory address exploration interfaces incorporated into game console
emulators like BizHawk or FCEUX (which are largely oriented
towards hacking, cheating at, or debugging games). That said, ex-
tending s4lve with other features of those interfaces—numerical
inequalities over memory address contents, UI for searching and
filtering addresses or sets of addresses, and so on—is a natural point
of extension for the core language. Since we have the full power
of regular expressions at our disposal, we could also make capture
groups (both of byte sequences and of state sequences) available
to the DSL and visualization context for more complex triggering
conditions—or, potentially, to handle dynamic memory allocation.

s4lve’s modular design requires a minimally invasive addition
of hooks to the target emulator. This can be done by inserting two
function calls into the emulator’s inner loops. Therefore, it makes
sense to extend the set of s4lve-supported emulators. Many such
emulators can be cross-compiled to Javascript, maintaining easy
shareability.

s4lve is a first step into a complex and deep application domain
requiring a lot of specialized knowledge of reverse engineering,
platform studies specifics, and experience making visualizations.
We hope that we can make this branch of game studies a little
less mysterious by continuing to improve s4lve’s usability and
by using it to illustrate the behavior of real games of interest to
the game studies community. Of all our planned future work, this
knowledge base of shareable, modifiable, and remixable “interactive
documentation” is by far the most significant. We look forward to
building this resource together with collaborators from all corners
of game studies and every community of play.

ACKNOWLEDGMENTS

The third author’s work is supported in part by the Natural Sciences
and Engineering Council of Canada, grant RGPIN-2015-06359.

REFERENCES

[1] J. Aycock. 2015. Applied Computer History: Teaching Systems Topics through
Retrogames. In 20th ACM Annual Conference on Innovation and Technology in
Computer Science Education. 105–110. https://doi.org/10.1145/2729094.2742583

[2] J. Aycock. 2016. Retrogame Archeology: Exploring Old Computer Games. Springer.
[3] Jeffrey Heer and Michael Bostock. 2010. Declarative language design for interac-

tive visualization. IEEE Transactions on Visualization and Computer Graphics 16,
6 (2010), 1149–1156.

[4] Gordon Kindlmann, Charisee Chiw, Nicholas Seltzer, Lamont Samuels, and John
Reppy. 2016. Diderot: a domain-specific language for portable parallel scientific
visualization and image analysis. IEEE transactions on visualization and computer
graphics 22, 1 (2016), 867–876.

[5] M. E. Lesk and E. Schmidt. 1975. Lex – A Lexical Analyzer Generator. Unix (7th
edition) Programmer’s Manual.

[6] T. Machado, D. Gopstein, A. Nealen, O. Nov, and J. Togelius. 2018. AI-Assisted
Game Debugging with Cicero. In 2018 IEEE Congress on Evolutionary Computation

https://doi.org/10.1145/2729094.2742583

s
4
lve: Shareable videogame analysis and visualization FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

(CEC). 1–8. https://doi.org/10.1109/CEC.2018.8477829
[7] Tiago Machado, Daniel Gopstein, Andy Nealen, and Julian Togelius. 2019. Kwiri -

What, When, Where and Who: Everything you ever wanted to know about your
game but didn’t know how to ask. CEUR Workshop Proceedings 2313 (1 1 2019),
43–50.

[8] M. Mernik, J. Heering, and A. M. Sloane. 2005. When and How to Develop
Domain-Specific Languages. Comput. Surveys 37, 4 (2005), 316–344.

[9] Joseph Carter Osborn, Ben Samuel, Michael Mateas, and Noah Wardrip-Fruin.
2015. Playspecs: Regular expressions for game play traces. In Eleventh Artificial
Intelligence and Interactive Digital Entertainment Conference.

[10] P. A. Peccin. 2015. Javatari – Online Atari 2600 Emulator. https://github.com/
ppeccin/javatari.js

[11] Katherine Ye, Keenan Crane, Jonathan Aldrich, and Joshua Sunshine. 2017. De-
signing extensible, domain-specific languages for mathematical diagrams. In Off
the Beaten Track.

https://doi.org/10.1109/CEC.2018.8477829
https://github.com/ppeccin/javatari.js
https://github.com/ppeccin/javatari.js

	Abstract
	1 Introduction
	2 Processing Game Play Streams
	2.1 Playspecs
	2.2 s4lve's Domain-Specific Language
	2.3 Spreadsheet Interface

	3 Demonstration
	3.1 Asteroids
	3.2 The PCG of Pitfall!
	3.3 Pitfall! in Motion

	4 Future Work and Conclusions
	Acknowledgments
	References

